If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+3x^2=189
We move all terms to the left:
4x^2+3x^2-(189)=0
We add all the numbers together, and all the variables
7x^2-189=0
a = 7; b = 0; c = -189;
Δ = b2-4ac
Δ = 02-4·7·(-189)
Δ = 5292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5292}=\sqrt{1764*3}=\sqrt{1764}*\sqrt{3}=42\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42\sqrt{3}}{2*7}=\frac{0-42\sqrt{3}}{14} =-\frac{42\sqrt{3}}{14} =-3\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42\sqrt{3}}{2*7}=\frac{0+42\sqrt{3}}{14} =\frac{42\sqrt{3}}{14} =3\sqrt{3} $
| 14=22-2p | | n-61/4=8 | | 6x-3x+3=12 | | 6X(2X+3)=x | | 12=xx-3 | | 12=x⋅-3 | | 17=2s+9 | | 11/2=3x+15=18 | | 17x8=85 | | 2(2g-8)=16 | | 7=s+41/10 | | -4.5=r/19 | | {1}{2}(8-6h)=h | | p=4.3 | | 4(r+3)-3r=16 | | 6x-10=3x/2 | | 7(-5x-8)=X | | z4−√2z3+2z2−√2z+1=0 | | -8x-4=140 | | X/X+8y=2 | | 3c=42/5 | | 4(r+3-3r=16 | | 7x+13=7x+12 | | z4−√2z3+2z2−√2z+1=0. | | q-12=96 | | 200(m-5)=500 | | 3x=4x= | | 6c+4=100 | | x-2+x+6=-7 | | 7+13x=11-4x | | 6x+20=5x-5 | | x^2-11x-21=0 |